Journal of Sound and Vibration (1999) 227(5), 915-933
Article No. jsvi.1999.2060, available online at http://www.idealibrary.com on IIII):[':E"'

®

EVOLUTION OF RAIL CORRUGATION
PREDICTED WITH A NON-LINEAR WEAR
MODEL

J. B. NIELSEN

DSB — Development Office, Otto Bussesvej SA, DK-2450 Kobenhavn SV
Dept. of Mathematical Modelling, Technical University of Denmark, DK-2800
Lyngby, Denmark

(Accepted 22 September 1998)

In the present work a non-linear wear model for the contact between a
cylinder rolling over a periodically varying surface is derived. The model is a
pure contact model where the dynamics of cylinder and surface are neglected.
With the aid of the derived model it can be shown, that even if the normal
force, the traction and the creep are held constant, corrugation will evolve due
to the non-linearities of the contact mechanics. The model furthermore predicts
the critical wave lengths for which the corrugation grows, and for which an
initial corrugation is levelled out. Finally it is shown that the amplitude of the
corrugation grows exponentially with a growth rate that for a given
corrugation can be determined analytically.

© 1999 Academic Press

1. INTRODUCTION

The evolution of rail corrugation is a large problem in railway traffic.
Corrugation appears as a pattern of shortwave ripples along the surface of the
rail, which generates noise and causes wear on the material and discomfort for
the passengers. The typical wave length for short pitch corrugation lies within
the range 0-03—0-1 m with wave amplitudes of magnitudes up to 100 um. A
thorough description of the various types of corrugation has been given by
Grassie and Kalousek [1].

Although the problem has been known and investigated for many years, a
fully satisfactory explanation of the phenomenon has not yet been found. Since
the corrugation evolves over thousands of train passages experimental
investigations are very difficult to carry out. Instead numerical simulations have
become a powerful tool in the search for understanding of the evolution of
corrugation. An overview of the different approaches has been given in the state
of the art review by Knothe and Grassie [2].

Most of the corrugation models are focussed on the dynamics of wheel and
rail with more or less primitive approximations then being applied for the
contact mechanics. The excitation of the wheel and rail due to surface
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irregularities or varying external parameters make the normal load and the
traction oscillate. This oscillation is then considered as the reason for the
evolution of the surface irregularities and thus the formation of corrugation.
There is no doubt that this mechanism has an important influence on the growth
of corrugation, but a result of the simplifications of the contact mechanics is that
important properties of the wheel/rail interaction are neglected.

The present work is aimed at explaining the formation and evolution of
corrugation from a pure contact mechanics point of view. This is done by
neglecting the eigenforms and eigenfrequencies of the bodies in contact and
including only the contact mechanics in the calculation of the wear. Surely the
dynamics of the rail and wheel must be taken into account in a complete
corrugation model, but in the present work it will be shown that a fully non-
linear model of the contact mechanics itself influences the corrugation heavily
and must be included in the ordinary simulation programs in order to yield more
realistic results.

2. THE PHYSICAL SYSTEM

To investigate the influence of pure contact mechanics on the evolution of
corrugation the two dimensional case of a cylinder rolling over a surface is
examined (Figure 1). It is assumed that the level of the surface at any time can
be described by a series of harmonic functions

Z(x) = i/[: Ay cos(kmx) + By, sin(kp,x). (1)

m=1

To simplify the model it is assumed that the entire wear is laid upon the surface,
and so the cylinder will always have the constant radius R. This is reasonable as
the model is intended to simulate many wheels running over the same surface.

If the curvature of the surface is larger than the curvature of the cylinder, a
two point contact arises. This implies sudden shifts in the location of the contact
point and the rolling motion is replaced by impacts between cylinder and
surface. As this is the case only for heavily corrugated rails and thus of minor
interest for the investigations of the formation of corrugation, the present model
is confined only to the case of single point rolling contact. Thus it is assumed
that the curvature of the cylinder is always much larger than the curvature of the

surface: i.e.,
\ AL+ BLRIE, <1,  m=1,2, -, M. (2)
Z
Uy

Figure 1. Cylinder rolling over a periodically varying surface.
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Much work has been carried out to treat the case of multiple contact points (see,
e.g. references [3] and [4]) where the configuration of an equivalent contact patch
is derived from the actual contact patches. As the present work will show, the
evolution of corrugation is very sensitive to what happens in the contact patch,
and so those approximations are not well suited for wear calculations.

3. CONTACT MECHANICS

When two elastic bodies are pressed together under a normal load, they
deform around their mutual contact point and a contact patch is created. In the
case of wheel/rail contact the deformations of the bodies are small, and so the
linear small strain theory can be applied [5]. As the size of the contact patch is
much smaller than the characteristic sizes of wheel and rail the bodies can
furthermore be considered as half spaces. The theory of half spaces has been
described by Johnson [6].

3.1. THE NORMAL CONTACT PROBLEM

Let the height of the two undeformed bodies in the vicinity of the contact
point be described by the functions Z;(#) and Z,(17) where 5 is a local position
co-ordinate. Then the constitutive equation of Cerruti—Boussinesq yields a
relation between the shape of the surfaces and the normal stress distribution p(#)
over the contact length 2a, [6]:

A1 - V)
nkE

Jaoao ’f(—ﬁ)ﬁ dn = _din(zl(”) — Z2(n)), —ap<n<ap. (3)

Here E is the modulus of elasticity and v is the Poisson’s ratio. In the present
work it is assumed that the two bodies are quasi-identical: i.e., have the same
material properties. If this is not the case equivalent material properties for the
system can be applied [7].

It is important to notice that the shapes of the surfaces are represented linearly
in equation (3). This implies that roughness from one surface can be superposed
on the other, and so any contact situation can be transformed into a contact
between two surfaces where one of them is level.

The solution of the normal contact problem in the case of a cylinder rolling
over a level surface was found by Hertz in 1882 [8]. In this case the shapes of the
two bodies in contact are

Zi(n)=R— VR —n,  Z(n)=0. (4,5)

Hertz made the assumption that the length of the contact patch is much smaller
than the radius of the cylinder, and so the second order approximation of the
cylinder,

Zi(n) =~ (1)2R)°, <R, (6)
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can be applied. With this inserted in equation (3) the integral equation can be
solved with respect to p() and so it is found that the normal stress distribution
over the contact patch is elliptic:

p(n) = E/[4(1 = )R\ a5 — P, —ay<n<ap. (7)

As the normal load N is equal to the normal stress integrated over the entire
contact patch the value of @, can be found as a function of N and R:

N= J p(n) dnay = \/8(1 — v?)RN/xE. (8)

—ay

To simplify the expression for the normal stress distribution, the maximum
normal stress po=p(0) is introduced, and then the normal stress distribution
becomes,

p(n) = (po/ao)rJ a5 —n?,  —ao<n<ap,  po= \/NE/2(1 —v2)nR. (9, 10)

3.2. THE TANGENTIAL CONTACT PROBLEM

If an axial torque is applied to the cylinder then a tangential force will interact
between the two bodies, and the cylinder will roll over the surface. As a result of
the compression of material in the contact patch the global relative velocity—

the creep—Dbetween cylinder and surface is not necessarily zero. The creep is
defined as

¢=(V—wR)/i|V+oR), (11)

where  is the angular velocity of the cylinder and ¥ is the rolling velocity of the
cylinder (see Figure 1). The local relative velocity s(n) between the bodies is
defined as

s(n) = &+ ou/dn — (1/V)du/dt, (12)

where u(#, ?) is the tangential displacement of the material in the contact zone. If
one assumes that du/0t is very small the constitutive equation for du/dn yields

—1/2 ag =
4(1nE )} q(i) . (13)

s(n) =&~

—ay n— 77/
where ¢(1) is the tangential stress distribution over the contact patch.

The omission of the non-stationary term Ou/0t is evidently critical especially
when the characteristic wave length of the corrugation is small relative to the
length of the contact patch. Actually it is not possible to solve the non-stationary
tangential problem for the two dimensional case as the value of Ju(0, 7)/0t
depends on the choice of the datum for the displacements. The problem of the
non-stationary two dimensional contact problem has been described by Kalker
[9]. The error introduced by neglecting the non-stationarity consists of an
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Figure 2. The Carter solution for the tangential stress distribution ¢() for a cylinder rolling
over a level surface.

oscillating term which must be added to the stationary creep. The amplitude of
this term depends on the unknown 9u(0, #)/0t.

The stationary tangential problem was solved by Carter in 1926 [10], who
found that the tangential stress distribution can be evaluated as the sum of two
ellipses. A new co-ordinate system, where the relation between the old and the
new co-ordinate system is

N =n+ay—ap, (14)

is introduced. One of the ellipses then has its centre in O(n) and the other in
O(n*) as is indicated in Figure 2, and so the tangential stress distribution ¢(1) is

qn) = q1(n) + q¢2(n"), (15)
upo/ao)\/ag —n*,  —ag<n<ap
i) = § VPl , (16)
0, otherwise
) —(upo/ao)\/ay® —n*?,  —ay<n* <aj
6]2(77 ) — ( / ) 0 0 0 , (17)
0, otherwise

where u is the friction coefficient. By inserting this tangential stress distribution
into equation (13) the local relative velocity s(17) between the bodies is found to
be

s(n") = ° ° 0 (18)

(W/ R\ —a?,  ag<n* <2ap — &
This implies that the contact patch is divided into a stick zone with the length
2aj at the leading edge and a slip zone at the trailing edge (see Figure 2). In the
stick zone s(17) =0 while s(n) #0 in the slip zone. The size of aj depends on the
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size of the contact length and the size of the creep:
ag=ag— (R/w)¢,  0<E<pao/R. (19)

The Carter solution and thus the Hertzian theory is the theory commonly used
for two dimensional bodies in rolling contact. The problem however is that the
theory of Hertz is based on a second order Taylor expansion of the bodies. This
means that the bodies in the vicinity of the contact point must be described as

Z(n) = oo + oun + oon’. (20)

When the surface is level, this yields of course the exact shape, but for a
corrugated surface where the size of the characteristic wave length is small
compared to the length of the contact patch, the second order approximation is
too primitive. In this case it is necessary to use a higher order Taylor expansion
of the surface.

3.3. A MORE REALISTIC APPROACH

In the following it is assumed that the accuracy of the second order
approximation of the cylinder is still sufficient and thus that the size of the
contact patch relative to the radius of the cylinder remains small even when the
surface is corrugated. This is true due to the assumption from equation (2). For
the corrugated surface the complete Taylor expansion is utilized. A relatively
small order of the polynomial approximation of the harmonic functions will of
course yield a fairly accurate result as the size of the contact patch is bounded,
but as it turns out that the fully developed Taylor expansion gives closed form
expressions for the size of the contact patch and the size of the stick zone, the
cylinder and the corrugated surface will be described by the expressions

Zi(n) = (1/2R)n’, (21)
M 00

Zy(n) =Y Awcoslkn (Vi + )] + Bysinlkn (Vi +n)] = wn’.  (22)
m=1 i=0

These are inserted into equation (3) which then must be solved with respect to
p(n). It can be shown that if

a hﬁ B M ;
J ) — dnzzojvm, —a<n<a, (23)

—a(n—1n)\/a* -1

then the function /(#) is a polynomial where the coefficients depend linearly on
the y;’s. This implies that the normal stress distribution for the case of a cylinder
rolling over a harmonically varying surface has the form

Po > e Citt'
p(n)=—°7Z 0

2=

—a<sn<a. (24)
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The coefficients C; are defined so that

Ci(—a)' = i Ci(a)' =0, (25)

i=0

oo
i=0
which ensures that singularities in the normal stress distribution do not occur.
Since the size of the contact patch is finite, # is bounded and as C; tends very
rapidly towards zero for large i’s the normal stress distribution will always be
bounded even though it is defined by an infinite series.

As a result of the asymmetries of the surface, the geometric contact point is no
longer constantly located on the vertical projection of the cylinder axis. When
the cylinder rolls downhill, the contact will take place behind the cylinder axis
whereas the contact point is ahead of the cylinder axis when the cylinder rolls
uphill. This mechanism is well known and included in many contact models. The
asymmetric surface will however also cause the contact point not to be located in
the centre of the contact patch. Instead the position of the centre is shifted the
distance A(x) from the position of the cylinder axis

4 (x) = il: Rk, Jo (aO km) [Bm Ccos (kmx) — Ay Sil’l(km x)] (26)

m=1

Here J, is the Bessel function of the first kind of order zero. Since the sign of
Jo(agk,,) varies, the size of agk,, influences on whether the centre of the contact
patch is ahead of the cylinder axis or behind the cylinder axis.

So the shape of the surface compensates to some extent for the shift in the
location of the contact point. The real contact length 2a is found as in the
Hertzian case by integrating the normal stress distribution and then isolating a:

M
a(x) =ao— Y RkuJi(aokm)[Am c0s (K x) By sin(kp x)]. (27)

m=1

The locations of the geometric contact point and the centre of the real contact
patch are illustrated in Figure 3. It is seen that for the given contact
configuration there is hardly any difference between the centre of the contact
patch and the axis of the cylinder. As the location of the contact point depends
only on the geometry of the bodies whereas the contact length and thus the
normal load is included in A4(x) it is not possible to make general conclusions
with respect to the position of the contact point versus the centre of the contact
patch. The assumption from equation (2) yields however that the centre of the
contact patch will be located very close to the position of the cylinder axis.

A further important thing to notice is that the normal stress distribution is no
longer elliptic. Due to the shape of the surface the symmetry of the stress
distribution is broken down. It will later be shown that this asymmetric
behaviour plays a very important role in the formation of the corrugation.

The above derived normal stress yields a tangential stress distribution
equivalent to that of the Carter solution, with the slight change that the elliptic
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Figure 3. The location of the geometric contact point and the centre of the contact patch:

————, the Hertzian normal stress distribution;
fully developed Taylor expansion.

shape is replaced by a polynomial form:

qm) = q1(n) + q2(n"),

[0.¢]
)= %ECM’/WZ— % —a<n<a
- i=0

0, otherwise

q1(n

o0
= 0 oo

0, otherwise

(")

Similarly the local relative velocity is found to be

o0
i=0

s(n*) =

The size of the stick zone a* is no longer constant in time but can be

, the normal stress distribution for the

(30)

(31)

calculated
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a*(x) = ay — A(x) + a(x) — ap

N
+ ) RhinJo(ay k) (B cos(km(x — ao + af)) — A sin(k(x — ao + a5))].

n=1

(32)

This yields that the size of the stick zone oscillates with the same wave length as
the size of the entire contact patch, but the phase and the amplitude of the
oscillation are different.

The Carter solution and the solution with a fully developed Taylor expansion
of the surface are given for four different contact situations in Figures (4a—d).
Some qualitative differences between the two approaches must be emphasized.
As stated earlier the centre of the contact patch is—as a result of the geometry
of the bodies—no longer constantly located on the vertical projection of the
cylinder axis. Secondly the size of the contact patch and the size of the slip zone
change as the cylinder rolls over the corrugated surface. These two changes in
the contact configuration are however not crucial as their amplitudes are small
and so they will not make a significant impact on the evolution of the
corrugation.

Far more important is the asymmetry in the normal stress distribution which
is transmitted to the tangential stress distribution. This implies that the
contribution from the slip zone to the entire tangential force oscillates with a
rather large amplitude as the cylinder rolls over the surface. Since the wear is
generated in the slip zone this oscillation will be transformed into the wear. So
even when the cylinder rolls over the surface with a constant normal force and a
constant tangential force the corrugation can evolve because the size of the
tangential stress in the slip zone varies.

4. WEAR

The wear of the surface is caused by the tangential force between the bodies in
contact and is defined as the height of material removed from the surface after
one passage of the cylinder. The wear is proportional to the frictional work
density [11],

Wi(x) = KVJq(x, Ds(x, 1) dr, (33)

where V' is the velocity of the cylinder and K is a material dependent constant.
An often seen simplification of this expression is the linearized form

W(x) = KT(x)&(x), (34)
where 7(x) is the tangential force and £(x) is the creep due to the Carter solution

1.e., the global relative velocity (equation (11)). This approximation however
implies that the wear over the surface is constant if the tangential force and the
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creep are kept constant, which contradicts the arguments from the previous
section. Instead the integral must be solved for the fully developed solution to
the tangential contact problem derived in the previous section.

4.1. CALCULATING THE WEAR
The integral in equation (33) for the more realistic approach from section 3.3 is

W = kv [ Lo CA LG, (35)
2ar—a @0 \/a® — 2 R\/y2 — a2

1.2

(@

0.4 —
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T
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0.08 — <+

z/IL
T

0.04 —

(b)

0.8 —

0.4 —

Normalized stress

0.12

0.08 — <+

z/IL
T

0.04 —

0 | \ \
-15 -1 -05 0 05

x/L

Figure 4. Stress distribution for a cylinder rolling over a periodically varying surface. Top: tan-
gential stress distribution for the Carter approximation (————) and for the solution based on
fully developed Taylor expansions ( ). Bottom: the cylinders position on the surface. (a)
Vi=0; (b) Vi=—L/4; (c) Vi=—L/2; (d) Vi=-3L/4.
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which can be calculated to yield

W(x) = (KVN/R)[uCo(x) /a(x)Pt(x)[1 = ro(x) = r7(x) + r7(x)l.  (36)

ro(x) = (%) /7(x), (37)

where t(x) is half the time it takes for the entire contact patch to pass the
position x and 7*(x) is half the time it takes the stick zone to pass x.
This leads for the surface

Z(x) = Acos(kx) + Bsin(kx) (38)

1.2

0.4 —

Normalized stress
T

0.12

0.08 — <+

z/IL

0.04 —

| ()

0.8 —

04—

Normalized stress
T

0.12

0.08 —

z/IL

0.04

0
-1.5 -1 -0.5 0 0.5
x/L

Figure 4. (continued)
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to the following expression for the wear:

W(x) = Wy + (WA + W)B) cos(kx) + (W1 B — WsA) sin(kx) + O((4 + B)?).
(39)

With the assumption from equation (2) that the curvature of the cylinder is
always much larger than the curvature of the surface all the higher order terms
in equation (39) can be neglected. As it is the amplitude of the corrugation that
is of major interest the constant term W) is also omitted, and so the actual wear
after one passage of the cylinder can be approximated by

W(x) = (W1 A+ W1B) cos(kx) + (W B — W, A) sin(kx), (40)
where the wear coefficients W, and W, are given as
Wi = Ki*(N/ao) f(kao, kay), W = K> (N/ao) g (kao, kay). (41, 42)

The two functions f(kao, kaj) and g(kay, kajj) are analytically given and involve
harmonic functions and Bessel functions of the first kind of order zero and order
one. Because the wear depends linearly on 4 and B, the nature of the wear is
such that if the surface can be described by a series of harmonic functions
(equation (1)) then the global wear is equal to the sum of the wear contributions
from each of the harmonic functions:

M
Z(x) = Apcos(kpx) + By sin(kyx) =

m=1

M
W(X) - Z(Wm,lAm + I/Vm,ZBm) COS(ka) + (Wm, le - Wm,ZAm) Sin(kmx)~

m=1

(43)

In this way even the wear of a very complicated surface configuration can be
found, simply by calculating the Fourier representation of the surface and then
finding and summing up the wear for each term of the Fourier series.

5. EVOLUTION OF CORRUGATION

5.1. CALCULATING THE CORRUGATION

With the wear defined as the height of the material removed as the cylinder
rolls over the surface, it is obvious that the shape of the surface after one
passage of the cylinder is equal to the old surface minus the wear. This yields for
the surface given in equation (38) and the corresponding wear (equation (40))
that

ZW (x) = 2% (x) — W% (x) = ZW(x) = 41V cos(kx) + B sin(kx),  (44)
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where the high indices refer to the number of cylinder passages. So if the level of
the initial surface is harmonic, then the level after one passage of the cylinder is
also harmonic with the same wave length but with different amplitude and
phase. This gives the discrete mapping

At 1—w, W, ] (A"
{B{nJrl}} = |: W2 1 — W1:| {B{n}} (45)
From this discrete mapping it is possible to make a calculation of the shape of
the surface after each passage of the cylinder in a completely straightforward
analytical way. Thus time consuming integrations or space stepping are avoided,

and so the present method is as fast as any other method based on more
primitive models for the contact mechanics

5.2. AMPLIFYING AND LEVELLING ZONES

The fact that the development of the corrugation can be calculated by
analytical, closed forms makes it possible to derive some qualitative properties
concerning the evolution of the corrugation. From the discrete mapping
introduced in the previous section (equation (45)) it is found that the amplitude
of the surface after one passage of the cylinder can be described by the former
surface configuration as

AU B = (12w (4D 4 BUEIY, (46)
which is generalized to
AW LB (1 =240 4 BV, (47)

This means that the growth rate of the corrugation depends only on the size of
(1 —2W): if this term is smaller than 1 any initial amplitude will be levelled out
whereas the amplitude grows exponentially if (1 —2W;)>1. As |[W|<1 the
criteria of stability are

W, > 0 < the corrugation is levelled out
W, < 0 < the corrugation is amplified. (48)

With the wave length of the corrugation introduced as L =2n/k, then the sign of
W, depends only on L/a, and agy/a,, and so these two ratios are crucial for the
formation of corrugation. A typical outline of W for a fixed a;/a, value is given
in Figure 5. This indicates that there exists one and only one critical L/a, ratio
for which (1 —2W;)=0. This is the limit of stability and so surface irregularities
with L/ay ratio smaller than this value are levelled out while the corrugation is
amplified if the L/a, ratio exceeds the critical value. Furthermore it is seen that
(1 =2W)) tends towards 1% for long wave lengths. This states that if the wave
length of the corrugation is large compared with g, then the amplitude of the
corrugation is unaffected by the contact mechanics.

In Figure 6 the qualitative evolution of a corrugated surface is shown. The
initial surface consists of two different wave lengths L; and L, where L,



928 J. B. NIELSEN

1-2W,

\
25 7.5 125

L/a,

Figure 5. The wear coefficient (1 —2W,) for aj/ay=0-6.

is smaller than the critical wave length and L, is bigger than the critical wave
length. As initial condition the amplitude belonging to L; is set to be 10 times
larger than the amplitude belonging to L,. It is seen that as the number of
passages increases, the wave length which initially was dominant is levelled out
while the other grows rapidly.

The critical wave length as a function of aj/a is shown in Figure 7. This line
divides the (aj/ap, L/ag)-space into an amplifying zone above the line and a
levelling zone below the line. In this way the line represents the smallest possible
wave lengths for which corrugation can occur.

So the deformations of the bodies act like a filter on the surface irregularities.
It is not something new to apply a contact filter to take the filtering effect of the

Evolution of corrugations

X/L2

Figure 6. The qualitative evolution of corrugations.
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Figure 7. The smallest possible wave lengths of the corrugation.

size of the contact patch into account. One of the most frequently used filters
was suggested by Remington [12] who introduced a contact filter for a
rectangular contact patch:

L .
FRemington = Fao sm(2nao/L). (49)

This filter is not directly applicable to a wear problem as the negative values
implies that the surface in these cases is coated with material as the cylinder
passes by. To avoid this non-physical behaviour Hempelmann [13] has
introduced a modified Remington contact filter where negative values do not
occur. It is seen that the only critical value for the Remington filter is the L/ay
ratio whereas the relative size of the stick zone is not included. This is a crucial
lack of the Remington filter compared with the results obtained with the present
model.

The qualitatively discrepancies between the Carter solution with a contact
filter and the method described in this paper can be illustrated very easily. By
introducing the equivalent radius R,guivaen, Of the contact system as

l/Requivalent<x) - I/Rcylin(ler + 1/Rsurface ()C), (50)

the Carter solution is found to depend on the position of the cylinder. With the
assumption that the wear takes place in the centre of the slip zone this yields
that

WCarter(x) = WO + (Wl,CarterA + W2, Carter B) COS(kX)
+ (Wl, Carter B— WZ, Carter A) sin(kx), (5 1)

Wl, Carter — _K.uz (N/CIO) (kQO)zrao(l - 2rao + ri(,) Cos(kaS)FReminglon 5 (52)
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Figure 8. The evolution of initial surface irregularities represented by white noise. Top: level of
the surface: ————, initial surface; ———, surface after a number of cylinder passages. Bottom:
the spectra of the surface irregularities: — — — —, initial surface; ————, surface after a number of
cylinder passages.

WZ, Carter — _K,UZ(N/GO)(kGO)zVaQ (1 - 2rao + rio) Sin(kQS)FRemingt()n 5 (53)

Fay = A/ Q. (54)

Provided that the contact filter does not depend on «; this implies that the limit
between amplifying zone and levelling zone is given by

W, Carter = 0 = cos(kay) = 0 = L/ay = 4ag/ay. (55)

So with a contact filter applied to the Carter solution, the smallest possible wave
length is found to be a linear relation between L/ay and aj/a,. This is in strong
contrast to the result shown in Figure 7. It is evident from the above result that
the asymmetry of the stress distribution is a very important factor in the
formation of corrugation: the present method where the asymmetry is taken into
account provides results quite different from the Carter solution combined with
a contact filter.

5.3. CHARACTERISTIC WAVE LENGTH

Another important property is that (1 —2W;) has a maximum. At first this
maximum does not seem to be very dramatic, but because the wear rate is given
as (1 —2W))" a very distinct peak in the frequency spectra will grow up as the
number of cylinder passages (n) increases. So this relative wave length will be
dominating the corrugation, which explains why a certain corrugation pattern
usually evolves with one and only one distinct wave length. This effect is seen
in Figure 8 where the initial corrugation of the surface is given as white noise.
After a number of cylinder passages a corrugation pattern with one dominant
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Figure 9. The characteristic wave lengths for which the corrugation is most likely to develop.

wave length has evolved. In practice broad spectra of wave lengths are always to
some extent represented on the surface of a rail. Because the wave length is
much more decisive for the evolution of the corrugation than the initial
amplitude, this means that a certain characteristic wave length without any
apparent reason will emerge even though it is not dominant in the initial wheel/
rail system.

The characteristic wave length depends on the aj/a, ratio and thus the
magnitude of the creep. So if the creep changes, the characteristic wave length of
the corrugation will change. In Figure 9 this characteristic wave length is shown
for different ag;/a, values. It is seen that the L/a, ratio for the characteristic wave
length lies in the range from 5-10. In wheel/rail contact the typical size of aq is
somewhere between 5 mm and 10 mm, which thus provides a characteristic wave
length in the interval 0-025—0-1 m. This fits very well with the observed wave
lengths for short pitch corrugation [1].

As the principle of superposition is valid, the resulting wear rate after N
passages with varying a;/a, ratios can be calculated as

2 2 N n *1n n 2 2
ANY BV (H[1—2W1(L/aé L™ g })J>(A{O} + B, (56)

n=1

which makes it possible to find the peak in the frequency spectrum and thus the
characteristic wave length after many different wheels with different creeps have
rolled over the surface.

6. CONCLUSIONS

A non-linear wear model for a cylinder rolling over a periodically varying
surface has been presented. By keeping all external parameters except the surface
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level constant it is possible with this model to derive some of the basic qualities
of wheel/rail interaction in order to explain the formation and evolution of rail
corrugation. Three important results have been pointed out. First it is possible
with a discrete mapping to calculate the wear and thus the evolution of initial
surface irregularities. Secondly it has been shown, that an initial corrugation can
either be amplified or levelled out depending on the sizes of L/ay and ag/a,. This
yields that the (ag/ag, L/ag)-space is divided into an amplifying zone and a
levelling zone. The limit between these two zones is the smallest possible wave
length of the corrugation. Finally the model can predict the characteristic wave
length of the corrugation, a wave length that depends uniquely on the two ratios
L/ay and aj/a,. The amplitude of the corrugation will grow exponentially with
the number of cylinder passages.

In general the initial amplitudes of the surface irregularities are not crucial for
the evolution of the corrugation. As the growth of the corrugation is
exponential, the wave length of a surface component is far more important than
the amplitude. In practice all wave lengths are to some extent represented on the
surface of a rail, and as the corrugation pattern is wave length dependent the
general pattern of the corrugation at two different places will evolve in the same
way if the characteristics of the wheels rolling over it are the same. Similarly the
evolution of the rail corrugation on an arbitrary rail can be predicted if only the
distributions of the creep and the contact length of the passing wheels are
known.
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